Continuous fields of C*-algebras over finite dimensional spaces
نویسنده
چکیده
Let X be a finite dimensional compact metrizable space. We study a technique which employs semiprojectivity as a tool to produce approximations of C(X)-algebras by C(X)subalgebras with controlled complexity. The following applications are given. All unital separable continuous fields of C*-algebras over X with fibers isomorphic to a fixed Cuntz algebra On, n ∈ {2, 3, ...,∞} are locally trivial. They are trivial if n = 2 or n =∞. For n ≥ 3 finite, such a field is trivial if and only if (n− 1)[1A] = 0 in K0(A), where A is the C*-algebra of continuous sections of the field. We give a complete list of the Kirchberg algebras D satisfying the UCT and having finitely generated K-theory groups for which every unital separable continuous field over X with fibers isomorphic to D is automatically locally trivial or trivial. In a more general context, we show that a separable unital continuous field over X with fibers isomorphic to a KK-semiprojective Kirchberg C*-algebra is trivial if and only if it satisfies a K-theoretical Fell
منابع مشابه
Fiberwise Kk-equivalence of Continuous Fields of C*-algebras
Let A and B be separable nuclear continuous C(X)-algebras over a finite dimensional compact metrizable space X. It is shown that an element σ of the parametrized Kasparov group KKX(A,B) is invertible if and only all its fiberwise components σx ∈ KK(A(x), B(x)) are invertible. This criterion does not extend to infinite dimensional spaces since there exist nontrivial unital separable continuous f...
متن کاملContinuous Fields of Kirchberg C*-algebras
In this paper we study the C*-algebras associated to continuous fields over locally compact metrisable zero dimensional spaces whose fibers are Kirchberg C*-algebras satisfying the UCT. We show that these algebras are inductive limits of finite direct sums of Kirchberg algebras and they are classified up to isomorphism by topological invariants.
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملNoncommutative Lattices and the Algebras of Their Continuous Functions
Recently a new kind of approximation to continuum topological spaces has been introduced, the approximating spaces being partially ordered sets (posets) with a finite or at most a countable number of points. The partial order endows a poset with a nontrivial non-Hausdorff topology. Their ability to reproduce important topological information of the continuum has been the main motivation for the...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005